歡迎您來(lái)到深圳欣博盛生物科技有限公司網(wǎng)站!
Enzo Life Sciences的ROS-ID® NO Detection kit以紅色熒光的NO檢測(cè)試劑為主要成分,可通過(guò)熒光顯微鏡直接實(shí)時(shí)監(jiān)測(cè)活細(xì)胞中NO的產(chǎn)生。這種非熒光的、可滲透細(xì)胞的NO檢測(cè)染料在O2存在的情況下能夠與NO發(fā)生反應(yīng),具有高特異性、靈敏性和準(zhǔn)確性,產(chǎn)生不溶于水的紅色熒光產(chǎn)物。這種染料對(duì)過(guò)氧亞硝酸鹽沒(méi)有反應(yīng)性,因此可以區(qū)分過(guò)氧亞硝酸鹽和一氧化氮。
ROS-ID® NO Detection kit中的熒光探針對(duì)活性氯或溴不敏感,因此不用于檢測(cè)這些分析物。染色后,該染料產(chǎn)生的熒光產(chǎn)物可通過(guò)熒光顯微鏡進(jìn)行觀察。當(dāng)需要同時(shí)檢測(cè)額外的熒光信號(hào)(綠色或橙色)時(shí),建議使用650/670 nm的組合。ROS-ID® NO Detection kit包含足夠的試劑,可對(duì)活細(xì)胞(貼壁或懸?。┻M(jìn)行至少200次檢測(cè)。
產(chǎn)品特色
通過(guò)熒光顯微鏡直接實(shí)時(shí)監(jiān)測(cè)活體細(xì)胞中NO的產(chǎn)生
高特異性、靈敏性和準(zhǔn)確性,產(chǎn)生不溶于水的紅色熒光產(chǎn)物
可區(qū)分過(guò)氧亞硝酸鹽和一氧化氮
試劑盒內(nèi)包含一氧化氮誘導(dǎo)劑和清除劑
產(chǎn)品信息
產(chǎn)品貨號(hào) | ENZ-51013-200 |
產(chǎn)品名稱 | ROS-ID® NO Detection kit / 欣博盛生物 |
規(guī)格 | 1*1Kit |
操作 | Protect from light. Avoid freeze/thaw cycles. |
短期保存 | -20°C |
長(zhǎng)期保存 | -80°C |
試劑盒組分 | NO Detection Reagent (Red), 60 µl NO Inducer (L-Arginine), 100 µl NO Scavenger (c-PTIO), 400 nmoles 10X Wash Buffer, 15 ml |
應(yīng)用 | Fluorescence microscopy, Fluorescent detection |
部分產(chǎn)品引用文獻(xiàn)
1. Human M1 macrophages express unique innate immune response genes after mycobacterial infection to defend against tuberculosis: A. Karshan, et al.; Commun. Biol. 5, 480 (2022)
2. Noncanonical Role of Telomerase in Regulation of Microvascular Redox Environment With Implications for Coronary Artery Disease: K.A. Aissa, et al.; Function 3, zqac043 (2022)
3. S1P (Sphingosine-1-Phosphate)-Induced Vasodilation in Human Resistance Arterioles During Health and Disease: B. Katunaric, et al.; Hypertension 79, 2250 (2022)
4. High-content analysis monitoring intracellular trafficking and replication of Mycobacterium tuberculosis inside host cells: N. Debousere, et al.; Methods Mol. Biol. 2314, 649 (2021)
5. Hyperhomocysteinemia and Low Folate and Vitamin B12 Are Associated with Vascular Dysfunction and Impaired Nitric Oxide Sensitivity in Morbidly Obese Patients: M. Haloul, et al.; Nutrients 12, 2014 (2020)
6. Stimulation of TRPA1 attenuates ischemia-induced cardiomyocyte cell death through an eNOS-mediated mechanism: S.R. Andrei, et al.; Channels (Austin) 13, 192 (2019)
7. Anti-inflammatory effects of olive-derived hydroxytyrosol on lipopolysaccharide-induced inflammation in RAW264.7 cells: Y. Yonezawa, et al.; J. Vet. Med. Sci. 80, 1801 (2018)
8. Oligodendrocyte RasG12V expressed in its endogenous locus disrupts myelin structure through increased MAPK, nitric oxide, and notch signaling: H.E. Titus, et al.; Glia 65, 1990 (2017)
9. Improved arterial flow-mediated dilation after exertion involves hydrogen peroxide in overweight and obese adults following aerobic exercise training: A.T. Robinson, et al.; J. Hypertens. 34, 1309 (2016)
10. STAT3 Represses Nitric Oxide Synthesis in Human Macrophages upon Mycobacterium tuberculosis Infection: C.J. Queval, et al.; Sci. Rep. 6, 29297 (2016)
11. Flavonoids activate endothelial nitric oxide synthase by altering their phosphorylation via mitogen-activated protein kinase pathways in glucose-induced endothelial cells: C.E. Kim, et al.; J. Funct. Foods 17, 676 (2015)
12. Ginsenoside Rg3 regulates S-Nitrosylation of the NLRP3 inflammasome via suppression of iNOS: S. J. Yoon, et al.; Biochem. Biophys. Res. Commun. 463, 1184 (2015)
13. Propofol restores TRPV1 sensitivity via a TRPA1-, nitric oxide synthase-dependent activation of PKCε: P. Sinharoy, et al.; Pharmacol. Res. Perspect. 3, e00153 (2015)
14. Reduced flow-and acetylcholine-induced dilations in visceral compared to subcutaneous adipose arterioles in human morbid obesity: I. Grizelj, et al.; Microcirculation 22, 44 (2015)
15. Anti-inflammatory effects of Edaravone and Scutellarin in activated microglia in experimentally induced ischemia injury in rats and in BV-2 microglia: Y. Yuan, et al.; BMC Neurosci. 15, 125 (2014)
16. Lipopolysaccharide (LPS) stimulation of fungal secondary metabolism: Z.G. Khalil, et al.; Mycology 5, 168 (2014)
17. Cyclosporine attenuates arginine transport, in human endothelial cells, through modulation of cationic amino acid transporter-1: A. Grupper, et al.; Am. J. Nephrol. 37, 613 (2013)
18. Identification and characterization of a functional mitochondrial angiotensin system: P.M. Abadir, et al.; PNAS 108, 14849 (2011)
19. Loss of bcl-2 during the senescence exacerbates the impaired angiogenic functions in endothelial cells by deteriorating the mitochondrial redox state: M. Uraoka, et al.; Hypertension 58, 254 (2011)
詳情請(qǐng)聯(lián)系Enzo Life Sciences金牌代理——欣博盛生物