歡迎您來到深圳欣博盛生物科技有限公司網(wǎng)站!
Enzo Life Sciences的ROS-ID®Hypoxia/Oxidative stress detection kit專門用于使用熒光顯微鏡或流式細胞術(shù)對活細胞(懸浮和貼壁)中的缺氧和氧化應(yīng)激水平進行功能性檢測。該試劑盒包含能夠檢測缺氧狀態(tài)(紅色)和氧化應(yīng)激水平(綠色)的熒光探針。
檢測缺氧的染料(紅色)利用缺氧細胞中存在的硝基還原酶活性,將硝基基團轉(zhuǎn)化為羥胺(NHOH)和氨基(NH2)并釋放出熒光探針。
氧化應(yīng)激檢測試劑(綠色)是一種非熒光的、可透過細胞的總ROS檢測染料,可與多種活性物質(zhì)直接反應(yīng)??墒褂门鋫錁藴薀晒馑兀?90/525 nm)和德克薩斯紅(596/670 nm)濾光片的寬場熒光顯微鏡、共聚焦顯微鏡或配備藍色(488 nm)激光的流式細胞儀進行細胞分析。
產(chǎn)品特點
● 高靈敏度和特異性的熒光探針,可用于檢測活細胞的缺氧和氧化應(yīng)激
● 可用于分析貼壁或懸浮細胞系
● 試劑盒內(nèi)包含整套試劑,包括ROS和缺氧誘導劑
實驗示例
圖1. 檢測人HeLa和HL-60細胞中的缺氧和氧化應(yīng)激水平。用缺氧誘導劑(DFO)和ROS誘導劑(pyocyanin)處理細胞。每個象限的數(shù)字反映了細胞(群體)的百分比。結(jié)果表明,缺氧和氧化應(yīng)激染料具有特異性。
圖2.使用不同試劑誘導HeLa細胞發(fā)生缺氧和氧化應(yīng)激反應(yīng)。缺氧探針在缺氧條件下被細胞硝基還原酶轉(zhuǎn)化后觀察到紅色熒光。
圖3.氧化應(yīng)激(A)和缺氧(B)檢測染料的吸收峰和發(fā)射峰分別為504nm/524nm和580nm/595nm。這些染料可以用488nm的氬離子激光器激發(fā),并在流式細胞儀上的FL1通道(氧化應(yīng)激染料)和FL3通道(缺氧紅染料)中檢測。
產(chǎn)品信息
產(chǎn)品貨號 | ENZ-51042-0125/ ENZ-51042-K500 |
產(chǎn)品名稱 | ROS-ID® Hypoxia/Oxidative stress detection kit |
別名 | ROS / Nitroreductrase |
規(guī)格 | 1*125tests/1*500tests |
短期保存 | -20°C |
長期保存 | -20°C |
試劑盒組分 | Hypoxia Red Detection Reagent Oxidative Stress Detection Reagent (Green) ROS Inducer (Pyocyanin) Hypoxia Inducer (DFO) |
應(yīng)用 | Flow Cytometry, Fluorescence microscopy, Fluorescent detection, HTS |
部分產(chǎn)品引用文獻
1. Dimethyloxalylglycine (DMOG), a Hypoxia Mimetic Agent, Does Not Replicate a Rat Pheochromocytoma (PC12) Cell Biological Response to Reduced Oxygen Culture: R. Chen, et al.; Biomolecules 12, 541 (2022)
2. Hydrogel microcapsules containing engineered bacteria for sustained production and release of protein drugs: C. Han, et al.; Biomaterials 287, 121619 (2022)
3. Inhibiting autophagy flux and DNA repair of tumor cells to boost radiotherapy of orthotopic glioblastoma: Q. Xu, et al.; Biomaterials 280, 121287 (2022)
4. Intracellular glucose starvation affects gingival homeostasis and autophagy: R. Li, et al.; Sci. Rep. 12, 1230 (2022)
5. Intrinsic radical species scavenging activities of tea polyphenols nanoparticles block pyroptosis in endotoxin-induced sepsis: Y. Chen, et al.; ACS Nano 16, 2429 (2022)
6. Iodinated cyanine dye-based nanosystem for synergistic phototherapy and hypoxia-activated bioreductive therapy: Y. Dong, et al.; Drug Deliv. 29, 238 (2022)
7. Lipoprotein-biomimetic nanostructure enables tumor-targeted penetration delivery for enhanced photo-gene therapy towards glioma: R. Wang, et al.; Bioact. Mater. 13, 286 (2022)
8. Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework: W.L. Pan ,et al.; Biomaterials 283, 121559 (2022)
9. Mitochondrial glutathione depletion nanoshuttles for oxygen-irrelevant free radicals generation: A cascaded hierarchical targeting and theranostic strategy against hypoxic tumor: B. Liang, et al.; ACS Appl. Mater. Interfaces 14, 13038 (2022)
10. Multifunctional Nanosnowflakes for T1-T2 Double-Contrast Enhanced MRI and PAI Guided Oxygen Self-Supplementing Effective Anti-Tumor Therapy: Y. Lv, et al.; Int. J. Nanomedicine 17, 4619 (2022)
11. Physiologic flow-conditioning limits vascular dysfunction in engineered human capillaries: K. Haase, et al.; Biomaterials 280, 121248 (2022)
12. Platinum prodrug nanoparticles inhibiting tumor recurrence and metastasis by concurrent chemoradiotherapy: W. Jiang, et al.; J. Nanobiotechnology 20, 129 (2022)
13. Strategy for improving cell-mediated vascularized soft tissue formation in a hydrogen peroxide-triggered chemically-crosslinked hydrogel: S.Y. Wei, et al.; J. Tissue. Eng. 13, 20417314221084096 (2022)
14. A cyclic nano-reactor achieving enhanced photodynamic tumor therapy by reversing multiple resistances: P. Liu, et al.; J. Nanobiotechnology 19, 149 (2021)
15. An albumin-based therapeutic nanosystem for photosensitizer/protein co-delivery to realize synergistic cancer therapy: S.L. Ai, et al.; ACS Appl. Bio. Mater. 4, 4946 (2021)
詳情請聯(lián)系Enzo Life Sciences金牌代理——欣博盛生物